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Abstract 

Wearable monitoring is important for the diagnosis, 

prevention, and treatment of cardiovascular diseases and 

overall cardiac health. A key indicator, Blood pressure 

(BP), currently relies on cuff-based devices for 

measurement that are cumbersome for ambulatory 

monitoring scenarios. Vibrational cardiography (VCG) is 

an unobtrusive, non-invasive tool which records cardiac 

vibrations on the surface of the chest. This work proposes 

using VCG in a novel method to estimate BP from a single 

point of contact. VCG was recorded by an inertial 

measurement unit on the xiphoid process of 62 subjects. A 

convolutional neural network was trained on the VCG 

waveforms to estimate systolic and diastolic BP. This 

resulted in an r-squared correlation coefficient of 0.86 and 

0.89 and a mean-absolute-error of 3.4 mmHg and 

2.2 mmHg for systolic and diastolic BP, respectively. 

Therefore, this work shows the applicability of using 

exclusively VCG for BP estimation. It affirms the value of 

VCG as an all-purpose health monitor, while also 

improving on the current techniques for continuous BP 

monitoring. This indicates the potential of VCG in many 

forms of wearable monitoring including remote 

healthcare, fitness, and wellness monitoring. 

 

 

1. Introduction 

Blood pressure (BP) an important vital sign for 

monitoring cardiac health. It is used as a predictor for 

cardiovascular disease and overall mortality [1]. This 

makes it a valuable metric in many forms of healthcare 

from the intensive care unit, annual checkups, and even at-

home monitoring [2]. Despite its necessity, current BP 

monitoring methods require a cumbersome cuff-based 

device which is obstructive to daily life and only offers 

discrete, discontinuous measurements. Therefore, to 

facilitate wearable and remote monitoring, there has been 

a push towards cuff-less monitoring. Several of these 

recent advances include inflatable wrist devices, weighing 

scales, and other wearables [3]. 

One wearable monitoring technique is vibrational 

cardiography (VCG) which records cardiac vibrations on 

the surface of the chest from an inertial measurement unit 

(IMU). The method records both linear acceleration, 

known as seismocardiography (SCG) and rotational 

velocity, known as gyrocardiography (GCG). VCG 

contains many applications in cardiac monitoring with its 

ability to measure heart rate [4], cardiac time intervals [5], 

and respiratory information [6]. Recent studies have 

applied VCG to derive information on stroke volume [7], 

arrhythmias [8], and even predicting heart failure [9]. 

A high correlation between the fiducial points of VCG 

and the timing of the opening and closing of valves 

indicates that valve movement could be considered one of 

the origins of the vibrational signal. This motion of the 

valves is controlled by the pressure differentials between 

the ventricle and the aorta during the cardiac cycle. 

Therefore, as VCG is generated by cardiac valve motion 

and the hydraulic valve motion is caused by central 

hemodynamics, there is an indirect relationship between 

VCG and blood pressure. The difficulty in deriving this 

relationship lies in the fact that VCG is highly variable due 

to the imperfect nature of the structural, electrical, and 

fluidic systems of the body. 

Due to advances in computational methods, machine 

learning (ML) excels at deriving statistical relationships 

within complex systems. Other studies have estimated BP 

from wearable cardiography techniques using ML [10]. 

Thanks to its small form factor and centralized location, 

VCG is a more attractive solution. Therefore, we have used 

an ML model to estimate BP using VCG. This paper shows 

the development of a convolutional neural network, and its 

proficiency as a tool in systolic and diastolic blood 

pressure estimation. 

 

2. Methods 

2.1 Data Acquisition 

The data was recorded using a custom-assembled 
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system consisting of commercial, off the shelf parts. The 

system was composed of a single IMU (MPU9250, 

Invensense) which contained an integrated accelerometer 

and gyroscope. The IMU was polled via I2C protocol by a 

Raspberry Pi zero. The sampling rate was approximately 

600 Hz. The accelerometer and gyroscope were set to a 

range of ± 2 g and ± 250 deg, respectively. Data was saved 

to a text file on the Raspberry Pi and was then sent 

wirelessly to a laptop computer for post-processing. A 

Biopac MP160 was used as a reference device containing 

the electrocardiography (ECG) and non-invasive blood 

pressure (NIBP) modules, which was sent to a second 

laptop. An externally wired clock signal was sent from the 

Biopac to the Raspberry Pi to synchronize the two devices. 

 
Figure 1. System schematic showing the IMU (red), ECG 

(blue), and NIBP (green) sensor locations on the body with 

corresponding connections to the Raspberry Pi (Rpi) and 

Biopac systems. 

 

The experiment was conducted on 62 subjects. All data 

was collected at McGill University and was approved by 

the McGill Research Ethics Board. The study consisted of 

35 male and 27 female subjects with (average ± standard 

deviation) age: 24.6 ± 4.5 years, height: 172 ± 10.4 cm, and 

weight: 70.2 ± 16.3 kgs. All subjects were healthy and had 

no known prior cardiovascular, respiratory, or 

hemodynamic conditions. Subjects were recorded in the 

supine position. The IMU was secured to the xiphoid 

process with a piece of double-sided tape with the X, Y, 

and Z axes oriented in the longitudinal, horizontal, and 

dorsoventral axes of the body, respectively. The gyroscope 

was left-hand oriented around each respective axis. Three 

ECG electrodes were placed across the torso with the 

positive electrode near the right arm, negative near the left 

leg and ground near the right leg. The NIBP device was 

secured to the left wrist using the finger cuffs on the index 

and middle fingers. For calibration, an inflatable arm cuff 

was placed on the left bicep. 

First, the NIBP device was calibrated to the arm. 

Subjects were asked to stay motionless and breathe 

normally. Then the subjects lay still for a 3-minute 

recording. The trial then consisted of several tests that were 

not used in this study. Afterwards they completed another 

2-minute baseline recording, totalling 5-minutes of data 

per subject. 

 

2.2 Preprocessing 

The NIBP signal was filtered by a 10 Hz low pass filter 

built into the Biopac device. The Biopac AcqKnowledge 

software was used to annotate the R-peaks from the ECG 

waveform. Artifact samples due to sensor noise were 

removed and filled by interpolation. It was then filtered by 

a 5th order Butterworth filter with a 90 Hz cut-off. The 

VCG signals were resampled to 200 Hz. An example of the 

VCG signal, from a single subject, can be seen in Figure 2. 

The signals were segmented into cardiac cycles, starting at 

0.1 seconds before the ECG R-peak. The corresponding 

maximum in the NIBP signal during each cardiac beat was 

defined as the systolic blood pressure (SBP) and likewise 

the minimum was the diastolic blood pressure (DBP).  

To prepare the sample for the ML model, each heartbeat 

was post mean-padded to a length of 500 points, 

corresponding to a maximum beat-to-beat duration 2.5 

seconds, which was longer than that observed for all 

subjects. All six axes were inputted to the model, resulting 

in a 500-by-6 vector for each training instance. The output 

for each instance was a single scalar value, corresponding 

to either SBP or DBP. A separate model was trained for 

each BP metric. Heartbeats containing major artifacts in 

BP or VCG, generally corresponding to motion or poor 

signal quality, were discarded from the study. 

 
Figure 2. An example of VCG showing the acceleration in 

the X, Y, and Z axes (AX, AY, AZ), gyration in the X, Y, 

and Z axes (GX, GY, GZ), and corresponding finger BP. 
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2.3 Model 

A one-dimensional convolutional neural network 

(CNN) model was built with a similar structure to the 

VGG16 model [11]. The structure was simplified to 

improve generalizability. The layout is shown in Figure 3. 

The model was sequential and consisted of three 

convolution blocks. Each block had two or three six-

channel convolutional layers followed by a max pooling 

layer with a pooling size of 2. All one-dimensional 

convolutional layers had a kernel size of 3, same padding 

to retain output shape, and ReLU activation. The number 

of filters per convolution layer increased in each 

convolution block. Finally, there was a flatten layer and 

two fully connected dense layers for output. The model 

was built and trained using the Keras framework in python. 

It was trained to minimize the mean-squared-error loss 

function using an Adam optimizer with a batch size of 128 

and 100 epochs.  

 

 
 

Figure 3. Structure of the proposed CNN. Model layers are 

shown with the corresponding number of filters for each 

convolutional layer and the number of nodes for each 

dense layer. 

 

2.4 Validation 

The proposed model was trained using 80% of the data 

and tested with 20%. All of the data was shuffled and 

subsequently split randomly. Pearson’s squared correlation 

coefficient (r2) was used to validate linearity between 

estimated and actual blood pressure. 

 

 

3. Results 

The analysis was performed on 62 subjects with 18,330 

heartbeats corresponding to 17,224 seconds of data. The 

average SBP observed was 115.5 ± 12.9 mmHg. The 

average DBP observed was 66.7 ± 9.2 mmHg. The 

evaluated CNN model produced an r2 of 0.86 (p<0.001) for 

SBP and 0.89 (p<0.001) for DBP. The corresponding 

mean-absolute-error (MAE) was 3.4 mmHg and 

2.2 mmHg for SBP and DBP, respectively. Figure 4 shows 

a Bland-Altman plot for estimated SBP and DBP, with 

respective 95% limits of agreement of -9.21 to 9.88 mmHg 

and -6.51 to 5.41 mmHg. 

 

 

 
 

Figure 4. Bland Altman plots of estimated blood pressure 

(BPest) and reference blood pressure (BPref) with mean 

(solid red) and 95% limits of agreement (dashed red) for 

(a) SBP and (b) DBP. 
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4. Discussion and Conclusion 

The model was able to estimate both SBP and DBP with 

a high correlation to the reference finger cuff, shows a 

relationship between the VCG signal and BP. Current 

standards by the Association for the Advancement of 

Medical Instrumentation (AAMI) describe a performance 

of less than 5 mmHg mean error and less than 8 mmHg 

standard deviation [12]. The proposed model performed 

within these guidelines with 0.34 and −0.55 mmHg mean 

error, and 4.8 and 3.0 mmHg standard deviation for SBP 

and DBP, respectively. The achieved low error and high 

correlation confirm the ability of using VCG as a robust 

vital signs monitor, capable of measuring heart rate, 

respiration, and now BP from a single point of contact on 

the body. This integration of multiple monitoring metrics 

gives VCG an edge over traditional techniques due to the 

improved ease of use. 

While the results are statistically verified, this study has 

a few limitations. First, the study incorporated random 

shuffling of the heartbeats, meaning that causality is not 

preserved, indicating that the model could be using future 

instances to predict prior BP. In comparison to other 

works, this is a common occurrence in the field of study 

and therefore the performance of the model should be 

evaluated using only prior information to simulate a real-

world environment. Second, the model was optimized to 

the subjects within the study. The performance on an 

unseen subject was not investigated. This would certainly 

reduce the prediction accuracy given that VCG 

morphology has a large inter-subject variability. Further 

work should be explored to provide generalized results on 

a less overfit model. Finally, the study did not examine 

long-term measurements and only included healthy 

subjects in an ideal environment without outside sources of 

noise. Given the goal of implementing this system in 

wearable scenarios, future studies should include more 

challenging situations, such as movement, exercise, and 

daily activities, to test the practical utility of the approach. 

This work has opened the door to using VCG for 

hemodynamic monitoring. It has provided a basis for 

estimating BP that can be extended to models and 

situations.  The analytical causation behind the VCG-BP 

relationship can be examined further to form more 

verifiable estimations for use in health, wellness, and 

fitness monitoring. 
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